博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
DeepLearning.ai-Week1-Convolution+model+-+Application
阅读量:6295 次
发布时间:2019-06-22

本文共 13685 字,大约阅读时间需要 45 分钟。

1.0 - TensorFlow model

  导入相关依赖包。

import numpy as np import h5pyimport matplotlib.pyplot as pltimport scipyfrom PIL import Imagefrom scipy import ndimageimport tensorflow as tf from tensorflow.python.framework import opsfrom cnn_utils import *

  初始化全局变量。

%matplotlib inlinenp.random.seed(1)

  导入数据集。

# Loading the data (signs)X_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = load_dataset()

  输出一张样例图片预览。

# Example of a pictureindex = 6plt.imshow(X_train_orig[index])print("y = " + str(np.squeeze(Y_train_orig[:, index])))
  Result:
  y = 2
 

 

  数据预处理。将输入图像像素除以255进行归一化,将标签数据扩充为$one\_hot$编码,并且查看数据规模。

X_train = X_train_orig / 255.X_test = X_test_orig / 255.Y_train = convert_to_one_hot(Y_train_orig, 6).TY_test = convert_to_one_hot(Y_test_orig, 6).Tprint("number of training examples = " + str(X_train.shape[0]))print("number of test examples = " + str(X_test.shape[0]))print("X_train shape: " + str(X_train.shape))print("Y_train shape: " + str(Y_train.shape))print("X_test shape: " + str(X_test.shape))print("Y_test shape: " + str(Y_test.shape))conv_layers = {}
Result:number of training examples = 1080number of test examples = 120X_train shape: (1080, 64, 64, 3)Y_train shape: (1080, 6)X_test shape: (120, 64, 64, 3)Y_test shape: (120, 6)

1.1 - Create placeholders

# GRADED FUNCTION: create_placeholdersdef create_placeholders(n_H0, n_W0, n_C0, n_y):    """    Creates the placeholders for the tensorflow session.        Arguments:    n_H0 -- scalar, height of an input image    n_W0 -- scalar, width of an input image    n_C0 -- scalar, number of channels of the input    n_y -- scalar, number of classes            Returns:    X -- placeholder for the data input, of shape [None, n_H0, n_W0, n_C0] and dtype "float"    Y -- placeholder for the input labels, of shape [None, n_y] and dtype "float"    """    ### START CODE HERE ### (≈2 lines)    # tf.placeholder第一个参数为类型,第二个参数位数据规模,可通过name参数指定变量名    X = tf.placeholder(tf.float32, [None, n_H0, n_W0, n_C0])    Y = tf.placeholder(tf.float32, [None, n_y])    ### END CODE HERE ###        return X, Y
X, Y = create_placeholders(64, 64, 3, 6)print ("X = " + str(X))print ("Y = " + str(Y))
Result:X = Tensor("Placeholder_2:0", shape=(?, 64, 64, 3), dtype=float32)Y = Tensor("Placeholder_3:0", shape=(?, 6), dtype=float32)

1.2 - Initialize parameters

  通过$tf.contrib.layers.xavier\_initializer(seed=0)$初始化权重/过滤器/卷积核$W_1$和$W_2$,不用关心$bias\_variables$的初始化,因为TensorFlow方法会帮助我们做这件事,所以我们只需要初始化卷积方法的卷积核。TensorFlow也会自动初始化全连接层的参数。

  使用TensorFlow初始化参数有如下语法:

W = tf.get_variable("W", [1,2,3,4], initializer = ...)
# GRADED FUNCTION: initialize_parametersdef initialize_parameters():    """    Initializes weight parameters to build a neural network with tensorflow. The shapes are:                        W1 : [4, 4, 3, 8]                        W2 : [2, 2, 8, 16]    Returns:    parameters -- a dictionary of tensors containing W1, W2    """        tf.set_random_seed(1)                              # so that your "random" numbers match ours            ### START CODE HERE ### (approx. 2 lines of code)    W1 = tf.get_variable("W1", [4, 4, 3, 8], initializer=tf.contrib.layers.xavier_initializer(seed=0))    W2 = tf.get_variable("W2", [2, 2, 8, 16], initializer=tf.contrib.layers.xavier_initializer(seed=0))    ### END CODE HERE ###    parameters = {
"W1": W1, "W2": W2} return parameters
tf.reset_default_graph()with tf.Session() as sess_test:    parameters = initialize_parameters()    init = tf.global_variables_initializer()    sess_test.run(init)    print("W1 = " + str(parameters["W1"].eval()[1,1,1]))    print("W2 = " + str(parameters["W2"].eval()[1,1,1]))
Result:W1 = [ 0.00131723  0.14176141 -0.04434952  0.09197326  0.14984085 -0.03514394 -0.06847463  0.05245192]W2 = [-0.08566415  0.17750949  0.11974221  0.16773748 -0.0830943  -0.08058 -0.00577033 -0.14643836  0.24162132 -0.05857408 -0.19055021  0.1345228 -0.22779644 -0.1601823  -0.16117483 -0.10286498]

1.3 - Forward propagation

  在TensorFlow中,可以通过如下一些函数(语法)实现前向传播。

tf.nn.conv2d(X,W1, strides = [1,s,s,1], padding = 'SAME')tf.nn.max_pool(A, ksize = [1,f,f,1], strides = [1,s,s,1], padding = 'SAME')tf.nn.relu(Z1)tf.contrib.layers.flatten(P)tf.contrib.layers.fully_connected(F, num_outputs)

  注意到,使用$tf.contrib.layers.fully\_connected$将会自动初始化全连接层的参数(权重),并且在训练模型的时候训练参数。因此我们无需初始化其参数。

  实现方法$forward_propagation$,使其构造模型:CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED。

# GRADED FUNCTION: forward_propagationdef forward_propagation(X, parameters):    """    Implements the forward propagation for the model:    CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED        Arguments:    X -- input dataset placeholder, of shape (input size, number of examples)    parameters -- python dictionary containing your parameters "W1", "W2"                  the shapes are given in initialize_parameters    Returns:    Z3 -- the output of the last LINEAR unit    """        # Retrieve the parameters from the dictionary "parameters"     W1 = parameters['W1']    W2 = parameters['W2']        ### START CODE HERE ###    # CONV2D: stride of 1, padding 'SAME'    Z1 = tf.nn.conv2d(X, W1, strides=[1, 1, 1, 1], padding="SAME")    # RELU    A1 = tf.nn.relu(Z1)    # MAXPOOL: window 8x8, sride 8, padding 'SAME'    P1 = tf.nn.max_pool(A1, ksize=[1, 8, 8, 1], strides=[1, 8, 8, 1], padding="SAME")    # CONV2D: filters W2, stride 1, padding 'SAME'    Z2 = tf.nn.conv2d(P1, W2, strides=[1, 1, 1, 1], padding="SAME")    # RELU    A2 = tf.nn.relu(Z2)    # MAXPOOL: window 4x4, stride 4, padding 'SAME'    P2 = tf.nn.max_pool(A2, ksize=[1, 4, 4, 1], strides=[1, 4, 4, 1], padding="SAME")    # FLATTEN    P2 = tf.contrib.layers.flatten(P2)    # FULLY-CONNECTED without non-linear activation function (not not call softmax).    # 6 neurons in output layer. Hint: one of the arguments should be "activation_fn=None"     Z3 = tf.contrib.layers.fully_connected(P2, 6, activation_fn=None)    ### END CODE HERE ###    return Z3
tf.reset_default_graph()with tf.Session() as sess:    np.random.seed(1)    X, Y = create_placeholders(64, 64, 3, 6)    parameters = initialize_parameters()    Z3 = forward_propagation(X, parameters)    init = tf.global_variables_initializer()    sess.run(init)    a = sess.run(Z3, {X: np.random.randn(2,64,64,3), Y: np.random.randn(2,6)})    print("Z3 = " + str(a))
Result:Z3 = [[ 1.44169843 -0.24909666  5.45049906 -0.26189619 -0.20669907  1.36546707] [ 1.40708458 -0.02573211  5.08928013 -0.48669922 -0.40940708  1.26248586]]

1.3 - Compute cost

# GRADED FUNCTION: compute_cost def compute_cost(Z3, Y):    """    Computes the cost        Arguments:    Z3 -- output of forward propagation (output of the last LINEAR unit), of shape (6, number of examples)    Y -- "true" labels vector placeholder, same shape as Z3        Returns:    cost - Tensor of the cost function    """        ### START CODE HERE ### (1 line of code)    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=Z3, labels=Y))    ### END CODE HERE ###        return cost
tf.reset_default_graph()with tf.Session() as sess:    np.random.seed(1)    X, Y = create_placeholders(64, 64, 3, 6)    parameters = initialize_parameters()    Z3 = forward_propagation(X, parameters)    cost = compute_cost(Z3, Y)    init = tf.global_variables_initializer()    sess.run(init)    a = sess.run(cost, {X: np.random.randn(4,64,64,3), Y: np.random.randn(4,6)})    print("cost = " + str(a))
Result:cost = 4.66487

1.4 - Model

  整合上面实现了的有用的方法去构建一个模型在SIGNS数据集上进行训练。

  将有几个步骤:

  * 1 create placeholders

  * 2 initialize parameters

  * 3 forward propagate

  * 4 compute the cost

  * 5 create an optimizer

  最后,创建一个$session$然后循环$num\_epochs$,每一次获得一个$mini-batches$并且通过模型预测出结果计算损失并且优化他们。

# GRADED FUNCTION: modeldef model(X_train, Y_train, X_test, Y_test, learning_rate = 0.009,          num_epochs = 100, minibatch_size = 64, print_cost = True):    """    Implements a three-layer ConvNet in Tensorflow:    CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED        Arguments:    X_train -- training set, of shape (None, 64, 64, 3)    Y_train -- test set, of shape (None, n_y = 6)    X_test -- training set, of shape (None, 64, 64, 3)    Y_test -- test set, of shape (None, n_y = 6)    learning_rate -- learning rate of the optimization    num_epochs -- number of epochs of the optimization loop    minibatch_size -- size of a minibatch    print_cost -- True to print the cost every 100 epochs        Returns:    train_accuracy -- real number, accuracy on the train set (X_train)    test_accuracy -- real number, testing accuracy on the test set (X_test)    parameters -- parameters learnt by the model. They can then be used to predict.    """        ops.reset_default_graph()                         # to be able to rerun the model without overwriting tf variables    tf.set_random_seed(1)                             # to keep results consistent (tensorflow seed)    seed = 3                                          # to keep results consistent (numpy seed)    (m, n_H0, n_W0, n_C0) = X_train.shape                 n_y = Y_train.shape[1]                                costs = []                                        # To keep track of the cost        # Create Placeholders of the correct shape    ### START CODE HERE ### (1 line)    # 1 create placeholders    X, Y = create_placeholders(n_H0, n_W0, n_C0, n_y)    ### END CODE HERE ###    # Initialize parameters    ### START CODE HERE ### (1 line)    # 2 initialize parameters    parameters = initialize_parameters()    ### END CODE HERE ###        # Forward propagation: Build the forward propagation in the tensorflow graph    ### START CODE HERE ### (1 line)    # 3 forward propagate    Z3 = forward_propagation(X, parameters)    ### END CODE HERE ###        # Cost function: Add cost function to tensorflow graph    ### START CODE HERE ### (1 line)    # 4 compute the cost    cost = compute_cost(Z3, Y)    ### END CODE HERE ###        # Backpropagation: Define the tensorflow optimizer. Use an AdamOptimizer that minimizes the cost.    ### START CODE HERE ### (1 line)    # 5 create an optimizer    optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost)    ### END CODE HERE ###        # Initialize all the variables globally    # 初始化全部变量    init = tf.global_variables_initializer()         # Start the session to compute the tensorflow graph    # 创建一个会话,并开始执行    with tf.Session() as sess:                # Run the initialization        sess.run(init)                # Do the training loop      # 训练num_epoches轮        for epoch in range(num_epochs):            minibatch_cost = 0. # 保存当前mini_batch的cost            num_minibatches = int(m / minibatch_size) # number of minibatches of size minibatch_size in the train set            seed = seed + 1            minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed) # 随机从训练集中获取一个mini_batch            for minibatch in minibatches: # 遍历mini_batch中的训练数据,计算损失                # Select a minibatch                (minibatch_X, minibatch_Y) = minibatch                # IMPORTANT: The line that runs the graph on a minibatch.                # Run the session to execute the optimizer and the cost, the feedict should contain a minibatch for (X,Y).                ### START CODE HERE ### (1 line)                _ , temp_cost = sess.run([optimizer, cost], feed_dict={X:minibatch_X, Y:minibatch_Y})                ### END CODE HERE ###                                minibatch_cost += temp_cost / num_minibatches                            # Print the cost every epoch            if print_cost == True and epoch % 5 == 0: # 每5轮输出一次当前损失值                print ("Cost after epoch %i: %f" % (epoch, minibatch_cost))            if print_cost == True and epoch % 1 == 0: # 取偶数轮数的损失值来画折线图                costs.append(minibatch_cost)                        # plot the cost      # 画出损失值折线图        plt.plot(np.squeeze(costs))        plt.ylabel('cost')        plt.xlabel('iterations (per tens)')        plt.title("Learning rate =" + str(learning_rate))        plt.show()        # Calculate the correct predictions      # 计算预测准确率          predict_op = tf.argmax(Z3, 1)        correct_prediction = tf.equal(predict_op, tf.argmax(Y, 1))                # Calculate accuracy on the test set      # 计算训练集准确率以及测试集准确率并且打印出来        accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))        print(accuracy)        train_accuracy = accuracy.eval({X: X_train, Y: Y_train})        test_accuracy = accuracy.eval({X: X_test, Y: Y_test})        print("Train Accuracy:", train_accuracy)        print("Test Accuracy:", test_accuracy)                        return train_accuracy, test_accuracy, parameters
_, _, parameters = model(X_train, Y_train, X_test, Y_test)
  Result:
Cost after epoch 0: 1.921332Cost after epoch 5: 1.904156Cost after epoch 10: 1.904309Cost after epoch 15: 1.904477Cost after epoch 20: 1.901876Cost after epoch 25: 1.784078Cost after epoch 30: 1.681051Cost after epoch 35: 1.618206Cost after epoch 40: 1.597971Cost after epoch 45: 1.566706Cost after epoch 50: 1.554487Cost after epoch 55: 1.502187Cost after epoch 60: 1.461036Cost after epoch 65: 1.304490Cost after epoch 70: 1.201760Cost after epoch 75: 1.163242Cost after epoch 80: 1.102885Cost after epoch 85: 1.087105Cost after epoch 90: 1.051911Cost after epoch 95: 1.018554
 
 
Tensor("Mean_1:0", shape=(), dtype=float32)Train Accuracy: 0.666667Test Accuracy: 0.583333
fname = "images/thumbs_up.jpg"image = np.array(ndimage.imread(fname, flatten=False))my_image = scipy.misc.imresize(image, size=(64,64))plt.imshow(my_image)
Result: 
 

1.5 - References

转载于:https://www.cnblogs.com/CZiFan/p/9481110.html

你可能感兴趣的文章
《Node.js入门经典》一2.3 安装模块
查看>>
《Java 开发从入门到精通》—— 2.5 技术解惑
查看>>
Linux 性能诊断 perf使用指南
查看>>
实操分享:看看小白我如何第一次搭建阿里云windows服务器(Tomcat+Mysql)
查看>>
Sphinx 配置文件说明
查看>>
数据结构实践——顺序表应用
查看>>
python2.7 之centos7 安装 pip, Scrapy
查看>>
机智云开源框架初始化顺序
查看>>
Spark修炼之道(进阶篇)——Spark入门到精通:第五节 Spark编程模型(二)
查看>>
一线架构师实践指南:云时代下双活零切换的七大关键点
查看>>
ART世界探险(19) - 优化编译器的编译流程
查看>>
玩转Edas应用部署
查看>>
music-音符与常用记号
查看>>
sql操作命令
查看>>
zip 数据压缩
查看>>
Python爬虫学习系列教程
查看>>
【数据库优化专题】MySQL视图优化(二)
查看>>
【转载】每个程序员都应该学习使用Python或Ruby
查看>>
PHP高级编程之守护进程,实现优雅重启
查看>>
PHP字符编码转换类3
查看>>